ইনফাইনাইট কোয়ান্টাম ওয়েলের জেনারেল সমাধান – আরও একটু

এক ঝলকে একটু দেখা, আরও একটু বেশি হলে ক্ষতি কি? যদি কাটেই জীবন ফিজিক্স পড়ে, আরও একটু বেশি জেনে, ক্ষতি কি? তাই আজ আমরা কোয়ান্টাম ওয়েলের জেনারেল সমাধানটিকে নিয়ে আরও একটু নাড়াচাড়া করবো, আরও একটু বেশি জানবো। যেমন জেনারেল সমাধানের ধ্রুবকগুলির তাৎপর্য কি, ওগুলোর বৈশিষ্টই বা কি ইত্যাদি। তাহলে চটপট জেনারেল সমাধানটিকে লিখে ফেল,

Psi(x, t) = \displaystyle\sum_n a_nPsi_n(x)e^{-iE_nt/\hbar}

যেখানে Psi_n(x) হল n-তম লেভেলের স্থানু ওয়েভ ফাংশন যাতে কণার শক্তি E_n। আশাকরি তোমাদের মনে আছে যে ওয়েভ ফাংশনকে সবসময়ই নর্মালাইজড থাকতে হবে (মনে কর কেন?)। সুতরাং, Continue reading “ইনফাইনাইট কোয়ান্টাম ওয়েলের জেনারেল সমাধান – আরও একটু”

এক্সপেকটেশন ভ্যালূ গণনা – একটি উদাহরণ

আজ আমাদের আলোচ্য বিষয় হল কোন একটি প্রদত্ত ওয়েভ ফাংশন থেকে বিভিন্ন পরিমাপযোগ্য রাশির এক্সপেকটেশন ভ্যালূ গণনা। এর আগের পোস্টের প্রবন্ধটি পড়ে থাকলে আজকের এই বিষয়টি বুঝতে তোমাদের বিন্দুমাত্র অসুবিধা হবেনা; উল্টে তোমরাই আমাকে শিখিয়ে দিতে পারবে! তবুও সম্পূর্ণতার স্বার্থে আমি একটি উদাহরণ দিয়ে ব্যাপারটি একটু আলোচনা করব। ধর আমরা কোন একটি কোয়ান্টাম কণার গতি সম্পর্কিত বিভিন্ন পরিমাপযোগ্য রাশি যেমন অবস্থান (x), ভরবেগ (p) এবং গতিশক্তির (E_k) এক্সপেকটেশন ভ্যালূ বা গড় মান নির্ণয় করতে চাই। সেজন্য আমাদের প্রথমেই যেটা চাই সেটা হল ওই কণার ওয়েভ ফাংশন। ওয়েভ ফাংশন কিভাবে গণনা করতে হয় সেটা তোমরা এর পরের পোষ্টে দেখতে পাবে। আজ আমি একটি ওয়েভ ফাংশন তোমাদের দিয়ে দেব! Continue reading “এক্সপেকটেশন ভ্যালূ গণনা – একটি উদাহরণ”

প্রবাবিলিটি ও গড় মান

ধর তুমি একটি কয়েন টস করলে। তাহলে হেড পাওয়ার সম্ভাবনা কত? সহজ প্রশ্ন; তোমরা সকলেই জানো যে এর উত্তর হল 50% (বা ভগ্নাংশে বললে 0.5)। এখন প্রশ্ন হল কিভাবে এই উত্তর এল? কয়েন টস করলে হয় হেড পড়বে নয়তো টেইল পড়বে। অর্থাৎ সম্ভাব্য ফলের মোট সংখ্যা 2। যেহেতু হেড ও টেইল পড়ার সম্ভাবনা সমান, তাই তার মধ্যে যেকোন একটি ফল পাওয়ার সম্ভাবনা হল 1/2 বা 0.5 বা 50%। চল আরেকটি উদাহরণ দেওয়া যাক। মনে কর একটি ব্যাগের মধ্যে 2 টি কালো বল ও 6 টি লাল বল আছে। তাহলে চোখ বন্ধ করে ব্যাগের থেকে একটি কালো বল বের করার সম্ভাবনা কত? ব্যাগের মধ্যে মোট বলের সংখ্যা 2 + 6 = 8। আর মোট কালো বলের সংখ্যা 2। অর্থাৎ মোট 8 টির মধ্যে 2 টি বল কালো। সুতরাং চোখ বন্ধ করে ব্যাগের মধ্যে থেকে একটি বল বের করলে তার কালো হওয়ার সম্ভাবনা বা প্রবাবিলিটি = 2/8 = 1/4 = 0.25 বা 25%। Continue reading “প্রবাবিলিটি ও গড় মান”